Sunday, June 30, 2013


EVOLUTION – ANNELID THEORY BIBLIOGRAPHY a supplement to earlier post today.  

I will not feel bad if you don’t read this, even if you are a biologist.  If you have a specific interest in annelid theory of chordate origin, the references may be helpful.

The references below are some that I found useful in understanding the evolution of the animal phyla, especially as pertains to the annelid theory.  They tend to focus on molecular aspects if I thought they shed light on the problem.  The bibliography is a partial one and could have been greatly expanded if for example, I included all those that did not make a link to both protostomes and deuterostomes [Akam, Michael, 1998, Biol. Bull., 195:373-374 deals with shifts in Hox gene expression in segments during evolution of arthropods] or my database was defective [a 1978 invertebrate collagens article in Science, 202:591-598 has an obvious defect in the author’s name(s)].  Since disappointment with the defects [noted in my 5/31/13 post] of some phylogenetic studies over a decade ago, I have not been very attentive to subsequent reports.

Arendt, D., and K. Nübler-Jung.  1994.  Inversion of dorsoventral axis?  Nature, 371:26. 

Arendt, Detlev, Ulrich Technau, and Joachim Wittbrodt.  2001.  Evolution of the bilaterian larval foregut.  Nature, 409:81-85.

De Robertis, E. M., and Yoshiki Sasai.  1996.  A common plan for dorsoventral patterning in Bilateria.  Nature, 380:37-40.

Eakin, Richard M. 1979.  Evolutionary significance of photoreceptors: in retrospect.  Am. Zool., 19:647-653.    Fig. 1 shows great similarity of photoreceptors of annelids and cephalochordates although he puts them near the tips of separate lines

Field, Katharine G., Gary J. Olsen, David J. Lane, Stephen J. Giovannoni, Michael T. Ghiselin, Elizabeth C. Raff, Norman R. Pace, and Rudolf A. Raff.  1988.  Molecular phylogeny of the animal kingdom.  Science, 239:748-753.  “Coelomates are thus monophyletic, and they radiated rapidly into four groups: chordates, echinoderms, arthropods, and eucoelomate protostomes.”

Gardiner, Stephen L., and Meredith L. Jones.  1985.  Ultrastructure of spermiogenesis in the vestimentiferans tube worm Riftia pachyptila (Pogonophora: Obturata).  Trans. Am. Microsc. Soc., 104(1):19-44.

Gould, James L.  1985.  How bees remember flower shapes.  Science, 227:1492-1494.  “presumptive vertebrate-invertebrate dichotomy is false”  bees use search and memory process similar to vertebrates.

Lull, Richard Swann.  1945.  Organic Evolution.  Macmillan, New York.  744pp. [Revised edition, 1929, earlier 1917] a paleontologist at Yale.  Fig. 123, page 429 after Wilder of annelid theory of vertebrate origin

Meurling, Patrick.  1967.  The vascularization of the pituitary in elasmobranchs.  Sarsia, 28:1-104. 

Miyamoto, Michael M., Jerry L. Slightom, and Morris Goodman.  1987.  Phylogenetic relations of humans and African apes from DNA sequences in the ψη-globin region.  Science, 238:369-373.  “. . the slowdown in the rate of sequence evolution evident in higher primates is especially pronounced in humans.” 

Moore, Richard C., and Michael D. Purugganan.  2003.  The early stages of duplicate gene evolution.  Proc. Natl. Acad. Sci. USA, 100:15682-15687.  “Gene duplications are one of the primary driving forces in the evolution of genomes and genetic systems.”

Pellettieri, Jason, and Geraldine Seydoux.  2002.  Anterior-posterior polarity in C. elegans and Drosophia-PARallels and differences.  Science, 298:1946-1950. “par” genes important in polarization for C. elegans embryo; homologs were discovered in mammals, this study looks at fruit fly

Peterson, Kevin J., Steven Q. Irvine, R. Andrew Cameron, and Eric H. Davidson.  2000.  Quantitative assessment of Hox complex expression in the indirect development of the polychaete annelid Chaetopterus sp.  Proc. Natl. Acad. Sci. USA, 97:4487-4492.  they found a similar Hox complex utilization in cells for adult body plan in the polychaete to that process described in the sea urchin

Ritzmann, Roy E., Martha L. Tobias, and Charles R. Fourtner.  1980.  Flight activity initiated via giant interneurons of the cockroach: evidence for bifunctional trigger interneurons.  Science, 210:443-445.  “command or trigger interneurons have been identified . . . .  including annelids, arthropod, mollusks, and turtle (1).” 

Romer, Alfred Sherwood.  1962.  The Vertebrate Body, 3rd edition.  Saunders, Philadelphia.  627 pp.    Illustration of annelid theory of chordate origin is on page 25 (same as Lull one but different caption) see pages 298-299 for transition in position of structures leading to pituitary – p. 298

Ruppert, Edward E., and Elizabeth J. Balser.  1986.  Nephridia in the larvae of hemichordates and echinoderms.  Biol. Bull., 171:188-196. 

Sarnat, Harvey B.  1984.  Muscle histochemistry of the planarian Dugesia tigrina (Turbellaria: Tricladida): implications in the evolution of muscle.  Trans. Am. Microsc. Soc., 103(3):284-294. 

Schwenk, Kurt, and Günter P. Wagner.  2001.  Function and the evolution of phenotypic stability: connecting  pattern to process.  Amer. Zool., 41:552-563. 

Smith, Peter R., Edward E. Ruppert, and Stephen L. Gardiner.  1987.  A deuterostome-like nephridium in the mitraria larva of Owenia fusiformis (Polychaeta, Annelida).  Biol. Bull., 172:315-323.

Southward, Alan J., and Eve C. Southward.  1982.  The role of dissolved organic matter in the nutrition of deep-sea benthos.  Amer. Zool., 22:647-658.  

Stein, Elizabeth A., and Edwin L. Cooper.  1983.  Inflammatory responses in annelids.  Am. Zool., 23:145-156.  inflammation of vertebrates and annelids shows related factors – histamine, agglutinins, lysins, etc.  also have amoeboid phagocytic cells   

Stoichet, Sarah A., Talat H. Malik, Joel H. Rothman, and Ramesh A. Shivdasani.  2000.  Action of the Caenorhabditis elegans GATA factor END-1 in Xenopus suggests that similar mechanisms initiate endoderm development in ecdysozoa and vertebrates.  Proc. Nat. Acad. Sci., USA, 97:4076-4081.

Terwilliger, R. C., and N. B. Terwilliger.  1987.  Are pogonophoran and annelid extracellular hemoglobin structures similar to one another?  Am. Zoologist, 27(4):32A, abstract #152.  Yes for Vestimentifera which also have a smaller Hb similar to one found in Perivata 

Tiplady, Brian, and Morris Goodman.  1977.  Primitive haemoglobin.  J. Mol. Evol., 9:343-347.  “The variations in nucleotide substitution rates were interpreted in terms of Darwinian selection, the emergence of a new function being followed by a rapid rate of evolution, which then slows down once the molecule has been optimized.” 

Tomarov, Stanislav I., Patrick Callaerts, Lidia Kos, Rina Zinovieva, Georg Halder, Walter Gehring, and Joram Piatigorsky.  1997.  Squid Pax-6 and eye development.  Proc. Natl. Acad. Sci. USA, 94:2421-2426. (March 1997)  Pax-6 in vertebrates and its homolog eyeless in Drosophila are known to be essential for eye development.”

Wagner, Gunte P., Chris Amemiya, and Frank Ruddle.  2003.  Hox cluster duplications and the opportunity for evolutionary novelties.  Proc. Natl. Acad. Sci. USA, 100:14603-14606.  “Hox genes play a key role in animal body plan development.  These genes tend to occur in tightly linked clusters in the genome.  Vertebrates and invertebrates differ in their Hox cluster number, with vertebrates having multiple clusters and invertebrates usually having only one.”

Joseph G. Engemann    June 30, 2013

No comments:

Post a Comment